METRO THERMAL ASH MONOFILL CLOSURE CAP STORMWATER DAMAGE AND RESTORATION UPDATE

SMITH-GARDNER

Metro Nashville
PUBLIC WORKS

Presented at the

Presenters:

John M. Gardner, P.E.

Clayton Hand, P.E.

April 20-22, 2016

Gatlinburg, Tennessee

Metro Thermal Ash Monofill

- Located in Downtown Nashville along Cumberland River
- Closed in October 2004
- **❖ Total Footprint 15 acres**

1Q 2010

METRO THERMAL ASH MONOFILL

Metro Nashville Public Works

Reference: Drawing Titled, "Closure Plan for the Metro Thermal Ash Monofill", dated Sept 2002; Rev. January 2003, Prepared by Gresham Smith and Partners, Craig S. Parker, P.E.

Final Cover Design Configuration

- ❖ 3H:1V Sideslopes low permeability soil (placed at k< 10⁻⁷ cm/s)
- Mid-Slope Benches (10' width; 10:1 backslope 1' Bench Gutter) with Underdrains (4"Φ pipe/Stone/GT-S wrap)
- Three Letdown Structures (with Underdrains)
- Perimeter Drainage Channels(with Underdrains)
- Plunge Pools at Letdowns
- All flows to on-site Sediment Pond

Weekend Rainfall Totals - May 1st & 2nd, 2010 Tennessee

Source: CoCoRaHS

This map is an interpolation of actual reported values, but should be considered an estimation only.

Created by the National Weather Service Forecast Offices Nashville, Tennessee & Louisville, Kentucky

May 1, 2010 to May 3, 2010

- ❖ >13.4 " Rainfall at site (elsewhere 17" to 19.4 ")
- ❖ >1,000-Year/48-Hour event
- ❖ Site inaccessible until ~ May 5th
- New Record River Flood Levels across Middle TN

Tennessee Extreme Event of May 1-2, 2010 Average Recurrence Intervals (ARI) for 48-Hour Duration

Created by Hydrometeological Design Studies Center
Office of Hydrologic Development
National Weather Service
National Oceanic and Atmospheric Administration

May 3, 2010

Photo 2. (North Slope) Scarp Immediately Down Slope from Bench

Photo 3. (North Slope) Scarp and Exposed Geocomposite

Photo 4. (North Slope) Crack and Letdown at East Side of Failure, Scarp at Top

Photo 5. (North Slope) Sloughed Cover Soil at Toe

Photo 6. (North Slope) Bulge at Toe

Photo 7. (South Slope) Bulge at Toe

Photo 8. (South Slope) Bulge at Toe

Photo 9. (South Slope) Tension Crack Below Bench

May 7, 2010 Conditions

- ❖ No intrusive/exploratory investigations "allowed" just replace
- South & North Slopes impacted (~ 2 acres total)
- ❖ Significant material movement North Slope only DGC exposed
- Both areas: toe bulging & extensive upslope Tension Cracking
- Perimeter channels flat bottom slopes/lower capacity
- No visible water flow in toe areas although signs of significant water beneath North Slope Material
- Benches flatter than designed and backslope less than designed
- Drainage Geocomposite and bench drain piping outlets not visible

Analysis

Topographic Mapping Comparisons (2005 & 2010):

- North & South benches have similar slopes & capacities
- ❖ Perimeter Channels have flat slopes (North 0.4% avg) and South (1% avg) & low capacities
- Contributing watersheds similar for each slide area

METRO THERMAL ASH MONOFILL

Metro Nashville Public Works

Analysis (Theorized)

Combination of Factors:

- Initial, small displacements due to toe saturation progressed upslope created T-cracks
- Mobilized shear strength along soil/DGC interface and within soil cover
- Progressive loss of frictional resistance along the soil/ geocomposite interface
 - Tension in upper DGC GT- S reduced "pillowing" friction
- Increase in downslope driving force eventually exceeded buttressing
- Tension crack development accelerated surface water to the geocomposite creating excessive head in the drainage geocomposite
 - Decreased normal load on soil/DGC interface
- Final Cover "floated" over the geosynthetics (North Slope only) exposing DGC
- Excessive head was believed to be due to:
 - Loss in perimeter channel/underdrain capacity to drain the final cover drainage layer
 - Rate of flow into the drainage geocomposite
- Why North Slope Only? Differences in North and South slopes none apparent, prior to construction

Factors (Theorized)

- Backwater in the plunge pools and Perimeter Channels contributed to inundate the upgradient perimeter underdrains on both slopes
- Critical movement occurred along the weakest un-reinforced interface (soil/drainage geocomposite)
- Critical movement did not occur along the DGC/GCL interface – due to tensile strength of the materials (anchored at the top of slope)
- Soils with high PI (33) increased susceptibility to shrink/swell (tension crack development)

Recommended Remediation

South Slide Zone (SubArea A):

- Regrade T-cracked slope areas and revegetate
- Provide a "break" in the bench drainage geocomposite (inspect underdrains)
- "Daylight" the drainage geocomposite into the perimeter channel through cap drain modification - disconnect from P. Underdrain
- Clean/reshape perimeter channel

Recommended Remediation

North Slide Zone (SubAreas B, C, D):

- Completely reconstruct the cap and drains subgrade to topsoil -(C only)
- ❖ Regrade T-cracked slope areas and revegetate (B, D)
- Provide a "break" in the bench drainage geocomposite (inspect underdrains) (B,C,D)
- "Daylight" the drainage geocomposite into the perimeter channel through cap drain modification - disconnect from P. Underdrain (B,C,D)
- Clean/reshape perimeter channel

FEMA Estimates/Site Inspections (mid-May 2010 through June 2010)

- Cost Estimates (Time and unit price based)
- ❖ Site Interviews (2)

METROPOLITAN GOVERNMENT OF NASHVILLE AND DAVIDSON COUNTY

DEPARTMENT OF PUBLIC WORKS

NASHVILLE, TENNESSEE

PUBLIC WORKS

METRO THERMAL ASH MONOFILL CAP RESTORATION CONSTRUCTION DRAWINGS

JUNE 2011

SHEET NO.	DRAWING NO.	TITLE	REVISION
1		TITLE - COVER SHEET	A
2	SI	EXISTING CONDITIONS (POST-FAILURE SURVEY)	\triangle
3	S2	SITE RESTORATION PLAN	\triangle
4	X1	SECTIONS (SHEET 1 OF 2)	Λ
5	X2	SECTIONS (SHEET 2 OF 2)	A
6	EC1	FINAL COVER AND EROSION CONTROL DETAILS (SHEET 1 OF 2)	\triangle
7	EC2	FINAL COVER AND EROSION CONTROL DETAILS (SHEET 2 OF 2)	A

GATTY NOTE:
Contractor shall be solely responsible for initiating, melantizating and supervising all safety precautions and important productions of the solely of presence of preparation relating to the solety of presence or preparity, or to the protection of persons or property, or to the protection of persons or property or to damage, injury, or loss, and shall wreat and ministrian di necessary surfacignate for such safety.

REFERENCE:

CONSTRUCTION DRAWINGS ENTITLED, "METRO THERMAL ASH MONOFILL CLOSURE," PREPARED BY GRESHAM SMITH AND PARTNERS, JUNE 2003, SHEET C.6, DETAIL 6.

FINAL COVER SECTION

Grading Subarea-A

Exposing Bench Drain pipe Subarea-A

Excavation for Cap Drain Modification, Subarea-A

Subarea-A, bench restoration, looking southeast

Removing vegetative layer, Subarea-B

Exposed Bench Drain, top of slope, Subarea-B

Subarea-B, completeing bench restoration

Subarea-B, completed bench restoration. Backfilled bench, added topsoil

Cutting in slope for cap drain modification, Subarea-B, looking east

Subarea-C, Removing cover material to expose liner over entire slope

Subarea-C, underdrain in eastern let-down structure

Subarea-C, Removing cover material to expose liner in bench

Subarea-C, deploy GCL panels

Subarea-C, GCL deployment

Subarea-C, sand placement over GCL

Subarea-C, drainage composite in anchor trench

Subarea-C, bench restoration

Subarea-C, letdown underdrain

Subarea-C, soil cover placement

Subarea-C, drainage composite deployment

Subarea-C, zip tie drainage composite

Subarea-C, toe drain construction

Subarea-C, toe drain construction

Subarea-C, cap drain modification construction

Subarea-C, soil cover placement over cap drain modification

Subarea-C, underdrain coming from Subarea-D

Subarea-C, underdrain coming from Subarea-D

Subarea-C, final grading

Subarea-C, seed and straw placement

North perimeter channel placement

Subarea-C, letdown structure

North letdown structure, plunge pool

Subarea-C, top of landfill

Subarea-C straw, access road gravel placed

Subarea-D, removing vegetative layer

Exposing Bench Drain, top of slope, Subarea-D, looking west

Subarea-D, exposed composite in toe of slope soil bulge, close up

Subarea-D, locating underdrain, edge of drainage composite exposed

Subarea-D, locating underdrain pipe, pipe out of subgrade ditch, standing water where pipe should be in ditch

Regrading Subarea-D

Subarea-D, bench restoration

Subarea-D, completed bench restoration. Backfilled bench, added topsoil

Subarea-C, soil boring 2 depth

Key Findings During Construction

- ❖ Perimeter Toe Drain in SubArea C/D was crushed (~ 120 LF)
- Perimeter Toe Drain in SubArea D was mis-located (i.e. not in the low point) and not perforated.

Source of North Tennessee Grid North GPS-GEIOD 2003 (NAD 83)

SCALE 1"=50'

 $GRID = 100' \times 100'$

AS-BUILT TOPOGRAPHIC SURVEY METRO THERMAL ASH MONOFILL LANDFILL

Nineteenth Council District
Nashville, Davidson County, Tennessee
Deed Book 7085, page 187
Tax Map 82 Parcel 23.00
Prepared for:

Gresham Smith and Partners 1400 Nashville City Center 511 Union Street Nashville, Tennessee 37219 615-770-8100 WWW.GSPNET.COM

Project: 27928.00 Date: 11-15-2011

Post – Remedial Construction 2012 to Present

2014 Aerial

Discharge end of Cap Drain Modification Piping

Possible Culprits

OR

South Slope July 2012

South Slope Cracks – July 2012

South Slope Cracks – August 2012

South Slope Cracks – September 2012

South Slope - 2016

South Slope - 2016

North Slope - 2016

North Slope - 2016

Take-Aways:

- 1. Good (perimeter) drainage is critical.
- 2. There is a storm coming that will exceed your design and impact even "good" final cover designs.
- 3. Redundancy in final cover designs is needed
- 4. Post-closure monitoring/inspection & maintenance is never finished